IZBOROM VEĆU ELEKTRONSKOG FAKULTETA U NIŠU

Na konkurs objavljen 3.3.2011. godine u „Narodnim novinama“, za izbor u zvanje docenta ili vanrednog profesora za užu naučnu oblast Matematika, prijavio se jedan kandidat, dr Dušan Milošević, docent Elektronskog fakulteta u Nišu. Na osnovu materijala priloženog uz konkursnu prijavu i na osnovu ličnog poznavanja kandidata, podnosimo sledeći

IZVEŞTAJ

1. OPŠTI BIOGRAFSKI PODACI

2. NAUČNO-ISTRAŽIVAČKI RAD

NAUČNI RADOVI

a) Radovi za sticanje formalnih kvalifikacija:

b) Udžbenička literatura:

Posle izbora u zvanje docent

c) Radovi objavljeni u međunarodnim časopisima:

Posle izbora u zvanje docent

d) Radovi objavljeni u vodećim časopisima nacionalnog značaja:

e) Radovi objavljeni u zbornicima sa konferencija:

Posle izbora u zvanje docent

ANALIZA NAUČNIH RADOVA

U ovom delu Izveštaja data je analiza samo onih radova koji su publikovani posle izbora u zvanje docenta. Ostali radovi su analizirani prilikom prethodnog izbora kandidata, u referatu od 2.11.2006. godine (referat br. 03/01-071/06).

Radovi c.8, c.10 i d.16 su posvećeni razvoju i konstrukciji efikasnih inkluzivnih metoda za istovremeno određivanje svih prostih (radovi c.8 i c.10), odnosno višestrukih nula polinoma (rad d.16). Korišćenjem koncepta R-reda konvergencije međusobno zavisnih nizova, izložena je analiza konvergencije predloženih metoda sa računski proveošćivim početnim uslovima, što je veoma značajno sa stanovišta primene predloženih metoda u praksi.

U radu c.8 su primenjene Newtonova i Halleyeva korekcija u cilju ubrzavanja konvergencije familije inkluzivnih metoda četvrtog reda. Tako su dobijeni inkluzivni metodi reda 5 i 6, respektivno. Börsch-Supanova korekcija je u radu c.10 primenjena na Eulerov metod čime je postignuto ubrzanje njegove konvergencije sa 4 na 6. Rad d.16
obrađuje slučaj višestrukih nula. U njemu se primenjuju Schröderova i Halleyeva korekcija, na osnovi metoda kvadratnog korena četvrtog reda, čime je postignuto ubrzanje konvergencije metoda na 5, odnosno 6. Na taj način su dobijeni metodi visoke računske efikasnosti, jer je ubrzanje konvergencije postignuto bez dodatnih izračunavanja vrednosti funkcija i njenih izvoda.

Dalje povećanje reda konvergencije dobijenih ubrzanih paralelnih (total-step) metoda postignuto je u radovima c.8 i d.16 primenom Gauss-Seidelovog pristupa. Na taj način su dobijeni takozvani serijski (single-step) metodi u kojima se u svakoj iteraciji koriste nove aproksimacije nula čim one postanu dostupne.

U radovima c.9, d.14 i e.13 razmatrani su početni uslovi za garantovanu konvergenciju intervalnih metoda kvadratnog korena (u d.14), familije k-tih korena (u c.9), odnosno Laguerreovog metoda (u e.13). Konvergencija pomenutih intervalnih metoda je dokazana pod računski proverljivim početnim uslovima, koji su značajno oslabljeni u odnosu na uslove izložene u dosadašnjim radovima.

Samokorigujući metodi koji automatski daju gornju granicu greške izračunatih aproksimacija razmatrani su u radu c.11. Analizirana su tri tipa takvih metoda: intervalni metodi, hibridni metodi koji kombinuju simultane metode u tačkastoj i intervalnoj aritmetici i kvazi intervalni metodi za posteriornu ocenu greške.

Jedno-parametarska familija iterativnih metoda za simultano određivanje prostih nula četvrtog reda koje leže unutar glatke zatvorene konture u kompleksnoj ravnini razmatrana je u radu c.12. Predložena familija se bazira na kubno konvergentnoj familiji iterativnih metoda za rešavanje nelinearnih jednačina.

Numerička stabilnost intervalnih metoda Gargantinijevog tipa za simultanu inkluziju svih prostih nula polinoma analizirana je u radu d.13. Izložena analiza daje red konvergencije u prisustvu greške zaokruživanja pri izračunavanju vrednosti polinoma i njegovih izvoda.

Rad d.15 je posvećen modifikaciji iterativnog metoda Börch-Supanovog tipa. Modifikovani metod obezbeđuje simultano određivanje k od n nula polinoma ($k \leq n$). Izložena analiza konvergencije, pod računski proverljivim početnim uslovima, pokazuje da je R-red konvergencije u slučaju kada je $k < n$ jednak dva, odnosno tri, kada je $k = n$.

3. NASTAVNO–PEDAGOŠKI RAD

Kandidat dr Dušan Milošević je u toku svog rada na Elektronskom fakultetu bio angažovan na izvođenju vežbi iz gotovo svih predmeta na Katedri za matematiku, a
bio je angažovan i na predmetu Geometrijsko modelovanje na Filozofskom fakultetu u Nišu. Od izbora u zvanje docenta držao je predavanja iz sledećih predmeta: Matematika, Matematika – odabrana poglavlja, Verovatnoća i statistika, Matematički metodi u računarstvu, Statistika i verovatnoća, Matematika IV i Matematika na strukovnim studijama. U toku tri šolske godine angažovan je na doktorskim studijama na Fakultetu sporta i fizičkog vaspitanja na predmetima Kvantitativne metode i Statistički programi. Sa uspehom je pripremao i vodio studente na takmičenjima u znanju iz Matematike na susretima studenata. U toku dosadašnjeg rada na fakultetu stekao je bogato pedagoško iskustvo i ispoljio zavidne kvalitete i smisao za nastavno-pedagoški rad.

ZAKLJUČAK I PREDLOG

Komisija referenata konstatuje da je kandidat docent dr Dušan M. Milošević ostvario više zapaženih naučnih rezultata od kojih je 13 objavljeno u poznatim inostranim časopisima za primenjenu matematiku i računarne nauke (od kojih 9 sa SCI liste) i 16 u vodećim domaćim časopisima. Kandidat raspolaže bogatim dugogodišnjim nastavno-pedagoškim iskustvom. Na osnovu prethodno iznetog, Komisija smatra da docent dr Dušan M. Milošević ispunjava sve uslove predviđene Zakonom o univerzitetu Republike Srbije i Statutom Elektronskog fakulteta za izbor u zvanje vanredni profesor za užu naučnu oblast Matematika na Elektronskom fakultetu u Nišu.

U Nišu,
16.05.2011. g.

Članovi komisije

1. Dr Miodrag S. Petković, redovni profesor
Elektronskog fakulteta u Nišu

2. Dr Ljubiša M. Kocić redovni profesor
Elektronskog fakulteta u Nišu,

3. Dr Predrag Rajković, redovni profesor
Mašinskog fakulteta u Nišu